
Sailfish OS Hardware Adaptation
Development Kit Documentation

Release 1.0.2-EA2

Jolla Ltd.

July 21, 2014

CONTENTS

1 Overview 3
1.1 Goal . 3
1.2 Development . 3
1.3 Deployment . 4

2 Prerequisites 7
2.1 Mobile Device . 7
2.2 Build Machine . 7
2.3 Want to Port to a New Device? . 7

3 Preparing Your Device 9
3.1 Backup and Verify Your Device . 9
3.2 Flash and Test CyanogenMod . 9

4 Setting up the SDKs 11
4.1 Setting up required environment variables . 11
4.2 Setup the Mer SDK . 11
4.3 Preparing the Mer SDK . 12
4.4 Setting up an Android Build Environment . 12

5 Building the Android HAL 13
5.1 Checking out CyanogenMod Source . 13
5.2 Building Relevant Bits of CyanogenMod . 13
5.3 Common Pitfalls . 14

6 Setting up Scratchbox2 Target 17

7 Packaging Droid HAL 19
7.1 Packaging droid-hal-device . 19
7.2 The /etc/hw-release file . 20

8 Creating the Sailfish OS Root Filesystem 23
8.1 Additional Packages for Hardware Adaptation . 23
8.2 Creating and Configuring the Kickstart File . 23
8.3 Patterns . 24
8.4 Building the Image with MIC . 24

9 Getting In 27
9.1 Boot and Flashing Process . 27
9.2 Operating Blind on an Existing Device . 27

i

9.3 Splitting and Re-Assembling Boot Images . 28

10 Flashing the rootfs image 29
10.1 Prerequisites . 29
10.2 Flashing back to Stock Android . 29
10.3 Flashing using Android Recovery . 30

11 Manual Installation and Maintenance 31
11.1 Extracting the rootfs via adb . 31
11.2 Flashing the boot image via adb . 31
11.3 Interacting with the rootfs via adb from Android . 31

12 Modifications and Patches 33
12.1 For Supported Devices . 33
12.2 Droid System . 33
12.3 Kernel . 34

13 Middleware 35
13.1 MCE libhybris Plugin . 35
13.2 Non-Graphic Feedback Daemon Droid Vibrator Plugin 35
13.3 Non-Graphic Feedback Daemon PulseAudio Plugin 35
13.4 PulseAudio Droid Modules . 35
13.5 Qt5 QtFeedback Droid Vibrator Plugin . 35
13.6 Qt5 Hardware Composer QPA . 35
13.7 SensorFW Qt 5 / libhybris Plugin . 37
13.8 Build HA Middleware Packages . 37

14 Porting Sailfish OS to a New Device 41
14.1 Find Device Info . 41
14.2 Prepare Environment . 41
14.3 Build Android . 41
14.4 Mer-side package building . 44

15 List of Supported Devices 47
15.1 Devices: $DEVICE and $VENDOR . 47
15.2 For New Devices . 47

16 List of Repositories 49

17 Package Naming Policy 51
17.1 List of naming rules . 51
17.2 List of Provides . 52
17.3 TODO . 52

18 License 53

19 Indices and tables 59

ii

Sailfish OS Hardware Adaptation Development Kit Documentation

This is a guide to help you understand how you can port Sailfish OS to devices running the Cyanogen-
Mod flavour of Android.

Warning: Modifying or replacing your device’s software may void your device’s warranty, lead
to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore
must be done entirely at your own risk. No one affiliated with this project is responsible for your
actions but yourself. Good luck.

Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported 1

Sailfish OS Hardware Adaptation Development Kit Documentation

2 Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported

CHAPTER

ONE

OVERVIEW

1.1 Goal

By following this guide you can set up a Mer-core based Linux system that will run on an Android
device, on top of the existing Android Hardware Adaptation kernel and drivers.

This consists of:

• Mer core: The Linux userspace core

• Android Hardware Adaptation (HA/HAL), consisting of:

• Device-specific Android Kernel

• Binary device drivers taken from an Android ROM (e.g. CyanogenMod)

• The libhybris interface built against the binary drivers

• Middleware packages depending on hardware-specific plugins

• A Qt/Wayland QPA plugin utilizing the Android hwcomposer

• Sailfish OS components

1.2 Development

1.2.1 Requirements

The development environment uses the Mer Platform SDK, with:

• one or more device specific targets (a rootfs with device-specific headers and libraries)

• a HA build SDK (a minimal Ubuntu chroot required to build the Android sources)

During the HA development you’ll typically have one window/terminal using the HA build SDK where
you build and work on Android code and another session using the Mer SDK where you build RPMs for
the hardware adaptation.

Setting up the Mer Platform SDK, as well as the device-specific targets and the Ubuntu HA build chroot
is described in Setting up the SDKs.

Commands and output from the Mer SDK session are indicated using MER_SDK $ at the top of the
code block, like this:

3

Sailfish OS Hardware Adaptation Development Kit Documentation

MER_SDK $

echo "run this command in the Mer SDK terminal"

How to enter MER_SDK $ is explained in Setup the Mer SDK.

Commands and output from the HA build session are indicated using HABUILD_SDK $ at the top of
the code block, like this:

HABUILD_SDK $

echo "run this command in the Ubuntu HA build SDK terminal"

How to enter HABUILD_SDK $ is explained in Entering Ubuntu Chroot.

1.2.2 The build area root directory

In this guide, we refer to the base of the SDK storage/build area with the environment variable
$MER_ROOT. You need several gigabytes of space in this area, we suggest the following paths:

• export MER_ROOT=/srv/mer/ for a system-wide installation

• export MER_ROOT=$HOME/mer/ for a user-specific installation

1.2.3 Build components

There are a number of components to build; the lower level and Android related components are built in
the HA build SDK; the rest are built in the Mer SDK.

• In the HA build SDK

• a kernel

• a hacking friendly initrd which supports various boot options

• hybris-boot.img and hybris-recovery.img (for booting and debugging)

• a minimal Android /system/ tree

• modified Android parts for compatibility with libhybris and Sailfish OS (e.g. Bionic
libc, logcat, init, ...)

• In the Mer SDK

• RPM packages containing all the built binaries and extracted configs

• Hardware-specific middleware and plugins (e.g. Qt QPA plugins, PulseAudio)

For distribution, RPM packages are uploaded to a HA-specific repository. With this repository, full
system images using the mic utility. The mic utility is usually also run inside the Mer SDK.

1.3 Deployment

The hybris-boot.img (containing both the kernel and our custom initrd) is flashed to the device,
while the Sailfish OS rootfs is placed in a subdirectory of the /data/ partition alongside an existing,
unmodified Android system.

4 Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported

Sailfish OS Hardware Adaptation Development Kit Documentation

The Sailfish OS rootfs is then used as a switchroot target with /data bind-mounted inside it for shared
access to any user data.

Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported 5

Sailfish OS Hardware Adaptation Development Kit Documentation

6 Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported

CHAPTER

TWO

PREREQUISITES

2.1 Mobile Device

• An ARMv7 Android device officially supported by CyanogenMod 10.1.x

• See http://wiki.cyanogenmod.org/w/Devices for a list of compatible devices

• See List of Supported Devices for a list of devices already supported by HADK

• Means to do backup and restore of the device contents (e.g. SD card or USB cable to host com-
puter), as well as flash recovery images to the device

2.2 Build Machine

• A 64-bit X86 machine with a 64-bit Linux kernel

• Mer Platform SDK

• Sailfish OS Target

• At least 16 GiB of free disk space (10 GiB source download + more for building) for a complete
Android build; a minimal download and HADK build (only hardware adaptation-related compo-
nents) requires slightly less space

• At least 4 GiB of RAM (the more the better)

2.3 Want to Port to a New Device?

If you cannot find your gadget among the List of Supported Devices, then you should first read through
the entire guide to get a feeling for the order in which things are typically done. Then scrupulously follow
Porting Sailfish OS to a New Device, clicking on all referenced sections (or even whole chapters!) as
you go, and backtracking to where you left off when each section/chapter is finished.

So we kindly ask our pioneer porters of new devices to be patient and ensure they use sophisticated PDF
readers, making full use of the back/forward ability ;)

7

http://wiki.cyanogenmod.org/w/Devices
http://wiki.merproject.org/wiki/Platform_SDK
http://releases.sailfishos.org/sdk/latest/targets/

Sailfish OS Hardware Adaptation Development Kit Documentation

8 Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported

CHAPTER

THREE

PREPARING YOUR DEVICE

Verify that you can backup and restore your device and that you understand device recovery options.
This is not only useful when flashing images you build with this guide, but also in case you want to reset
your device to its factory state with stock Android (note that not all Android vendors provide factory
images for download, so you might need to create a full backup of your running Android system and
store it in a safe place before starting to erase and reflash the device with your custom builds).

3.1 Backup and Verify Your Device

As mentioned above, it might be helpful to backup the stock image before flashing the CM release for
the first time, as getting the stock image might be hard for some vendors (e.g. some stock images are
only available as self-extracting .exe package for Windows) or impossible (some vendors do not provide
stock images for download).

Use an Android/CyanogenMod Recovery to:

1. Backup to SD card: system, data, boot and recovery partitions

2. Test restoring the backup (important)

Warning: While backing up to internal device storage is possible for some devices, if during porting
you end up overwriting that partition, your backups will be gone. In that case (and in case of devices
without SD card slots), it’s better to also copy the backup data to your development machine (e.g.
via adb pull in recovery). Recent versions of adb support full-device backups to a host computer
using the adb backup feature.

See the ClockworkMod Instructions for additional help.

3.2 Flash and Test CyanogenMod

The official CyanogenMod flashing instructions can be found on this CyanogenMod wiki page.

You may also want to verify that the CM build for your device is fully functional, to avoid wasting time
with hardware adaptations that have known issues. Also, your device might have some hardware defects
- testing in Android verifies that all components are working correctly, so you have a functionality
baseline to compare your build results with.

You should at least check the following features:

• OpenGL ES 2.0: Use e.g. Gears4Android to test (the hz you will get there will be max refresh
rate).

9

http://wiki.cyanogenmod.org/w/ClockWorkMod_Instructions
http://wiki.cyanogenmod.org/w/Devices
http://www.jeffboody.net/gears4android.php

Sailfish OS Hardware Adaptation Development Kit Documentation

• WLAN connectivity: Connect to an AP, ad-hoc or set up a mobile access point with your device.

• Audio: Headset detection, earpiece speaker, loudspeakers, etc.

• Bluetooth: Connect to bluetooth headsets, verify discoverability, send files.

• NFC: Check if NFC tags can be detected, read and/or written by the device.

• SD/MicroSD: Use a file manager app to see if inserted SD cards can be detected.

• USB: MTP, mass storage (if available) and adb access.

• Telephony: 2G/3G/LTE calls + data connectivity.

• GPS: Using GPSTest, check GLONASS too; typical time to fix; AGPS.

• Sensors: Using AndroSensor: Accelerometer, Proximity Sensor, Ambient Light Sensor, Gyro-
scope, Magnetometer (Compass).

• LEDs: If your device has notification LEDs or keypad backlights.

• Camera (front and back): Also test functionality of zoom, flash, etc..

• Buttons: Volume up, volume down, power, camera shutter, etc..

• Video out: HDMI / MHL connectivity if you have the necessary adapters. TV out.

• Screen backlight: Suspend and backlight control, minimum and maximum brightness.

• Battery meter: Charge level, battery health, charging via USB (wall charger and host PC).

• Vibration motor: Intensity, patterns.

• HW composer version: check dumpsys surfaceflinger through ADB (see SF Layer
Debugging).

We recommend that you write down the results of these tests, so you can always remember them.

10 Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported

https://play.google.com/store/apps/details?id=com.chartcross.gpstest
https://play.google.com/store/apps/details?id=com.fivasim.androsenso
http://bamboopuppy.com/dumpsys-surfaceflinger-layer-debugging/
http://bamboopuppy.com/dumpsys-surfaceflinger-layer-debugging/

CHAPTER

FOUR

SETTING UP THE SDKS

4.1 Setting up required environment variables

Throughout this guide we will be referencing the location of your SDK, targets and source code. As
is customary with Android hardware adaptations, the device vendor ($VENDOR) and device codename
($DEVICE) are also used, both in scripts and configuration files. For a list of vendor and device names,
refer to List of Supported Devices.

Now run the following commands on your host operating system substituting the obtained information
where indicated with [] (MER_ROOT value from The build area root directory):

HOST $

cat <<'EOF' > $HOME/.hadk.env
export MER_ROOT="[insert value of your choosing]"
export ANDROID_ROOT="$MER_ROOT/android/droid"
export VENDOR="[insert vendor name here]"
export DEVICE="[insert device codename here]"
EOF

cat <<'EOF' >> $HOME/.mersdkubu.profile
function hadk() { source $HOME/.hadk.env${1:+.$1}; echo "Env setup for $DEVICE"; }
export PS1="HABUILD_SDK [\${DEVICE}] $PS1"
hadk
EOF

cat <<'EOF' >> $HOME/.mersdk.profile
function hadk() { source $HOME/.hadk.env${1:+.$1}; echo "Env setup for $DEVICE"; }
hadk
EOF

This ensures that the environment is setup correctly when you use the ubu-chroot command to enter
the Android SDK.

It also creates a function hadk that you can use to set or reset the environment variables. As you can
see it also supports ~/.hadk.env.<name> to allow you to work on multiple devices in different sessions.

4.2 Setup the Mer SDK

The Mer SDK setup is described on the Mer wiki.

Ensure you are able to open a shell in the Mer SDK before moving on.

11

http://wiki.merproject.org/wiki/Platform_SDK

Sailfish OS Hardware Adaptation Development Kit Documentation

4.3 Preparing the Mer SDK

You’ll need some tools which are not installed into the Mer SDK by default:

• android-tools contains tools and utilities needed for working with the Android SDK

• createrepo is needed to build repositories locally if you want to create or update local RPM
repositories

• zip is needed to pack the final updater package into an .zip file

The latest SDK tarballs should include these but if not you can install those tools with the following
command:

MER_SDK $

sudo zypper in android-tools createrepo zip

4.4 Setting up an Android Build Environment

4.4.1 Downloading and Unpacking Ubuntu Chroot

In order to maintain build stability, we use an Ubuntu GNU/Linux chroot environment from within the
Mer SDK to build our Android source tree. The following commands download and unpack the rootfs
to the appropriate location:

MER_SDK $

hadk

TARBALL=ubuntu-trusty-android-rootfs.tar.bz2
curl -O http://img.merproject.org/images/mer-hybris/ubu/$TARBALL
UBUNTU_CHROOT=/parentroot/$MER_ROOT/sdks/ubuntu
sudo mkdir -p $UBUNTU_CHROOT
sudo tar --numeric-owner -xvjf $TARBALL -C $UBUNTU_CHROOT

4.4.2 Entering Ubuntu Chroot

MER_SDK $

hadk

ubu-chroot -r /parentroot/$MER_ROOT/sdks/ubuntu

#FIXME: Hostname resolution might fail. This error can be ignored.
Can be fixed manually by adding the hostname to /etc/hosts

12 Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported

CHAPTER

FIVE

BUILDING THE ANDROID HAL

5.1 Checking out CyanogenMod Source

Our build process is based around the CyanogenMod projects source tree, but when required we’ve
modified some projects, in order to apply patches required to make libhybris function correctly, and to
minimise the built-in actions and services in the init.*.rc files.

Ensure you have setup your name and e-mail address in your Git configuration:

MER_SDK $

git config --global user.name "Your Name"
git config --global user.email "you@example.com"

You also need to install the repo command from the AOSP source code repositories, see Installing
repo.

After you’ve installed the repo command, the following set of commands download the required
projects for building the modified parts of Android used in libhybris-based Mer device hardware adap-
tations.

HABUILD_SDK $

hadk

sudo mkdir -p $ANDROID_ROOT
sudo chown -R $USER $ANDROID_ROOT
cd $ANDROID_ROOT
repo init -u git://github.com/mer-hybris/android.git -b hybris-10.1
repo sync

The expected disk usage for the source tree after repo sync is 9.4 GB (as of 2014-02-18). Depending
on your connection, this might take some time. In the mean time, make yourself familiar with the rest
of this guide.

5.2 Building Relevant Bits of CyanogenMod

In the Android build tree, run the following in a bash shell (if you are using e.g. zsh, you need to run
these commands in a bash shell, as the Android build scripts are assuming you are running bash):

HABUILD_SDK $

13

http://source.android.com/source/downloading.html#installing-repo
http://source.android.com/source/downloading.html#installing-repo

Sailfish OS Hardware Adaptation Development Kit Documentation

hadk

source build/envsetup.sh
export USE_CCACHE=1

breakfast $DEVICE

rm .repo/local_manifests/roomservice.xml

The last command removes the CyanogenMod “roomservice” repository list, which contains any ad-
ditional device-specific repositories you need. In our case, the hybris-10.1 manifest file already
contains device-specific repositories, and the repositories added by roomservice would conflict with
those.

HABUILD_SDK $

make -j4 hybris-hal

The relevant output bits will be in out/target/product/$DEVICE/, in particular:

• hybris-boot.img: Kernel and initrd

• hybris-recovery.img: Recovery boot image

• system/ and root/: HAL system libraries and binaries

The expected disk usage for the source and binaries after make hybris-hal is 16 GB (as of 2014-
02-18).

5.2.1 For Supported Devices

See List of Supported Devices for a list of devices supported by HADK. Supported devices are automat-
ically downloaded as part of the HADK android build environment.

5.3 Common Pitfalls

• If repo sync fails with a message like fatal: duplicate path device/samsung/smdk4412-
common in /home/nemo/android/.repo/manifest.xml, remove the local manifest with rm
.repo/local_manifests/roomservice.xml

• If you notice git clone commands starting to write out “Forbidden ...” on github repos, you
might have hit API rate limit. To solve this, put your github credentials into ~/.netrc. More
info can be found following this link: Perm.auth. with Git repositories

• In some cases (with parallel builds), the build can fail, in this case, use make -j1
hybris-hal to retry with a non-parallel build and see the error message without output from
parallel jobs. The build usually ends with the following output:

HABUILD_SDK $

...
Install: .../out/target/product/$DEVICE/hybris-recovery.img
...
Install: .../out/target/product/$DEVICE/hybris-boot.img

14 Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported

https://confluence.atlassian.com/display/STASH/Permanently+authenticating+with+Git+repositories#PermanentlyauthenticatingwithGitrepositories-Usingthe.netrcfile

Sailfish OS Hardware Adaptation Development Kit Documentation

...
Made boot image: .../out/target/product/$DEVICE/boot.img

Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported 15

Sailfish OS Hardware Adaptation Development Kit Documentation

16 Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported

CHAPTER

SIX

SETTING UP SCRATCHBOX2 TARGET

It is necessary to setup a Scratchbox2 target to use for packaging your hardware adaptation packages in
the next section. Download and create your Scratchbox2 target with the following commands:

MERSDK $

hadk

cd $HOME

SFFE_SB2_TARGET=/parentroot/$MER_ROOT/targets/$VENDOR-$DEVICE-armv7hl
TARBALL_URL=http://releases.sailfishos.org/sdk/latest/targets/targets.json
TARBALL=$(curl $TARBALL_URL | grep 'armv7hl.tar.bz2' | cut -d\" -f4)
curl -O $TARBALL

sudo mkdir -p $SFFE_SB2_TARGET
sudo tar --numeric-owner -pxjf $(basename $TARBALL) -C $SFFE_SB2_TARGET

sudo chown -R $USER $SFFE_SB2_TARGET

cd $SFFE_SB2_TARGET
grep :$(id -u): /etc/passwd >> etc/passwd
grep :$(id -g): /etc/group >> etc/group

sb2-init -d -L "--sysroot=/" -C "--sysroot=/" \
-c /usr/bin/qemu-arm-dynamic -m sdk-build \
-n -N -t / $VENDOR-$DEVICE-armv7hl \
/opt/cross/bin/armv7hl-meego-linux-gnueabi-gcc

sb2 -t $VENDOR-$DEVICE-armv7hl -m sdk-install -R rpm --rebuilddb

sb2 -t $VENDOR-$DEVICE-armv7hl -m sdk-install -R zypper ar \
-G http://repo.merproject.org/releases/mer-tools/rolling/builds/armv7hl/packages/ \
mer-tools-rolling

sb2 -t $VENDOR-$DEVICE-armv7hl -m sdk-install -R zypper ref --force

The “collect2: cannot find ‘ld”’ error/warning after executing sb2-init can be ignored.

To verify the correct installation of the Scratchbox2 target, cross-compile a simple “Hello, World!” C
application with sb2:

MERSDK $

cd $HOME
cat > main.c << EOF

17

Sailfish OS Hardware Adaptation Development Kit Documentation

#include <stdlib.h>
#include <stdio.h>

int main(void) {
printf("Hello, world!\n");
return EXIT_SUCCESS;

}
EOF

sb2 -t $VENDOR-$DEVICE-armv7hl gcc main.c -o test

If the compilation was successful you can test the executable by running the following command (this
will run the executable using qemu as emulation layer, which is part of the sb2 setup):

sb2 -t $VENDOR-$DEVICE-armv7hl ./test

The above command should output “Hello, world!” on the console, this proves that the target can
compile binaries and execute them for your architecture.

18 Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported

CHAPTER

SEVEN

PACKAGING DROID HAL

In this chapter, we will package the build results of Building the Android HAL as RPM packages and
create a local RPM repository. From there, the RPM packages can be added to a local target and used to
build libhybris and the QPA plugin. They can also be used to build the rootfs.

7.1 Packaging droid-hal-device

This step requires:

• A populated $ANDROID_ROOT from Building the Android HAL

• A Mer Platform SDK installation (chroot) for RPM building

Inside your $ANDROID_ROOT, there is a copy of droid-hal-device in the rpm/ directory (since
it appears in the manifest).

The master git repo for the packaging is here: https://github.com/mer-hybris/droid-hal-device

This rpm/ dir contains the necessary .spec files to make a set of RPM packages that form the core
Droid hardware adaptation part and configuration file setup of the hardware adaptation. It also builds
a development package that contains libraries and headers, which are used when building middleware
components (see Middleware).

7.1.1 Building the droid-hal-device packages

The next step has to be carried out in a Mer SDK chroot:

MER_SDK $

cd $ANDROID_ROOT

THE COMMAND BELOW WILL FAIL. It's normal, carry on with the next one.
Explanation: force installing of build-requirements by specifying the
.inc file directly, but build-dependencies will be pulled in via
zypper, so that the next step has all macro definitions loaded
mb2 -t $VENDOR-$DEVICE-armv7hl -s rpm/droid-hal-device.inc build

mb2 -t $VENDOR-$DEVICE-armv7hl -s rpm/droid-hal-$DEVICE.spec build

This should leave you with several RPM packages in $ANDROID_ROOT/RPMS/.

If the second mb2 fails by writing out inconsistencies in kernel CONFIG_ flags, refer to the kernel
verifier section: Kernel config.

19

https://github.com/mer-hybris/droid-hal-device

Sailfish OS Hardware Adaptation Development Kit Documentation

7.1.2 Create a local RPM repository

Now we create a local repository that can be used to create images using mic or to install the develop-
ment headers into our sb2 target for building middleware components:

MER_SDK $

mkdir -p $ANDROID_ROOT/droid-local-repo/$DEVICE

rm -f $ANDROID_ROOT/droid-local-repo/$DEVICE/droid-hal-*rpm
mv RPMS/*${DEVICE}* $ANDROID_ROOT/droid-local-repo/$DEVICE

createrepo $ANDROID_ROOT/droid-local-repo/$DEVICE

7.1.3 Add local RPM repo to Target

This will allow build dependencies to be met from locally built packages:

MER_SDK $

sb2 -t $VENDOR-$DEVICE-armv7hl -R -m sdk-install \
ssu ar local-$DEVICE-hal file://$ANDROID_ROOT/droid-local-repo/$DEVICE

(safe to ignore warnings about connman or DBus):

Check it’s there:

MER_SDK $

sb2 -t $VENDOR-$DEVICE-armv7hl -R -msdk-install ssu lr

7.1.4 The device specific configuration

Now build the droid-hal-configs file. This is split into its own package to make supporting multiple
devices easier.

MER_SDK $

hadk

cd $ANDROID_ROOT
mb2 -t $VENDOR-$DEVICE-armv7hl \

-s hybris/droid-hal-configs/rpm/droid-hal-configs.spec \
build

7.2 The /etc/hw-release file

Sailfish OS Hardware Adaptations use the file /etc/hw-release to store variables related to the
device adaptation. This file is read by different middleware components to determine which adaptation
repositories to enable and which device-specific tweaks to apply.

File is autogenerated during the build of droid-hal-device (see droid-hal-device.inc). If
you wish to provide more customisations, please read the remainder of this section.

20 Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported

Sailfish OS Hardware Adaptation Development Kit Documentation

The format of this file is a line-based KEY=value format. The KEY is a non-empty string consisting of
only upper case characters (A-Z) and the underscore (_), it must not begin with an underscore (or
in other words, it must match the regular expression [A-Z][A-Z_]*). Lines starting with # are
considered comments and are ignored. Lines must not have any leading or trailing whitespace (any
such whitespace is stripped when the file is parsed), and the = character must also not be surrounded by
any whitespace. Values can contain any valid UTF-8 character (but no newline character).

An example file could look like this:

This is a comment
MER_HA_DEVICE=mako
MER_HA_VENDOR=lge

As far as Droid-based hardware adaptations are concerned, the following keys are mandatory and spec-
ified:

• MER_HA_DEVICE: Must be set to the device name, e.g. mako

• MER_HA_VENDOR: Must be set to the device vendor, e.g. lge

All other keys are not yet specified, and should not be used; parsers should ignore all lines that don’t
start with a known key.

Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported 21

Sailfish OS Hardware Adaptation Development Kit Documentation

22 Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported

CHAPTER

EIGHT

CREATING THE SAILFISH OS ROOT FILESYSTEM

8.1 Additional Packages for Hardware Adaptation

Some additional packages are used to allow access to device features. These middleware packages are
usually built against droid-headers / libhybris, and therefore need to be built separately for each target
device. To build, clone the repository from mer-hybris on Github. See Middleware for a list of all
middleware components (not all middleware components are used for all device adaptations).

Via the flexible system of patterns, you will be able to select only working/needed functions for your
device.

8.2 Creating and Configuring the Kickstart File

The kickstart file is generated using ssuks, which is part of the SSU utility.

Ensure you have done the steps to Create a local RPM repository.

MER_SDK $

cd $ANDROID_ROOT
mkdir -p tmp

HA_REPO="repo --name=adaptation0-$DEVICE-@RELEASE@"
sed -e \
"s|^$HA_REPO.*$|$HA_REPO --baseurl=file://$ANDROID_ROOT/droid-local-repo/$DEVICE|" \
$ANDROID_ROOT/installroot/usr/share/kickstarts/Jolla-@RELEASE@-$DEVICE-@ARCH@.ks \
> tmp/Jolla-@RELEASE@-$DEVICE-@ARCH@.ks

If you only want to rebuild some of the packages locally (and are confident that there are no changes
that require custom rebuilds) then you can use the public build if there is one; we’ll use sed to find (//)
the HA_REPO and then ‘a’ppend a new line with the OBS repo url:

MOBS_URI="http://repo.merproject.org/obs"
HA_REPO="repo --name=adaptation0-$DEVICE-@RELEASE@"
HA_REPO1="repo --name=adaptation1-$DEVICE-@RELEASE@ \
--baseurl=$MOBS_URI/sailfishos:/devel:/hw:/$DEVICE/sailfish_latest_@ARCH@/"
sed -i -e "/^$HA_REPO.*$/a$HA_REPO1" tmp/Jolla-@RELEASE@-$DEVICE-@ARCH@.ks

Feel free to replace sailfishos:/devel:/hw: with path to any suitable HA repo within Mer
OBS.

23

Sailfish OS Hardware Adaptation Development Kit Documentation

8.3 Patterns

The selection of packages for each hardware adaptation has to be put into a pattern file, so that creating
the image as well as any system updates in the future can pull in and upgrade all packages related to the
hardware adaptation.

Ensure you have done the steps to Create a local RPM repository.

Add/update metadata about patterns using this script (NB: it will fail with a non-critical error):

MER_SDK $

hadk

cd $ANDROID_ROOT
rpm/helpers/process_patterns.sh

As mentioned above, safely ignore the following error:

Exception AttributeError: "'NoneType' object has no attribute
'px_proxy_factory_free'"...

To modify a pattern, edit its respective template under rpm/patterns/{common,hybris,templates}
and then run rpm/helpers/add_new_device.sh. Take care and always use git
status/stash commands.

8.4 Building the Image with MIC

Ensure you re-generated Patterns (needs to be run after every createrepo)

Building a rootfs using RPM repositories and a kickstart file:

MER_SDK $

always aim for the latest:
RELEASE=1.0.8.19
WARNING: EXTRA_NAME currently does not support '.' dots in it!
EXTRA_NAME=-my1
sudo mic create fs --arch armv7hl \

--tokenmap=ARCH:armv7hl,RELEASE:$RELEASE,EXTRA_NAME:$EXTRA_NAME \
--record-pkgs=name,url \
--outdir=sfa-mako-ea-$RELEASE$EXTRA_NAME \
--pack-to=sfa-mako-ea-$RELEASE$EXTRA_NAME.tar.bz2 \
$ANDROID_ROOT/tmp/Jolla-@RELEASE@-$DEVICE-@ARCH@.ks

Once obtained the .zip file, proceed installation as per instructions to Early Adopters Release Notes.

Currently HADK does not support creating images with Jolla Store functionality.

If creation fails due to absence of a package required by pattern, note down the package name and
proceed to Dealing with a Missing Package.

A more obscure error might look like this:

Warning: repo problem: pattern:jolla-configuration-$DEVICE-(version).noarch
requires jolla-hw-adaptation-$DEVICE,

24 Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported

Sailfish OS Hardware Adaptation Development Kit Documentation

but this requirement cannot be provided, uninstallable providers:
pattern:jolla-hw-adaptation-$DEVICE-(version).noarch[$DEVICE]

This means a package dependency cannot be satisfied down the hierarchy of patterns. A quick in-place
solution:

• Substitute the line @Jolla Configuration $DEVICE with
@jolla-hw-adaptation-$DEVICE in your .ks

• Rebuild .ks

• Repeat the steps above substituting respective pattern to walk down the patterns hierarchy – you’ll
eventually discover the offending package

• If that package is provided by e.g. droid-hal-device (like
droid-hal-mako-pulseaudio-settings), it means that some of its dependencies
are not present:

• Edit .ks file by having %packages section consisting only of single
droid-hal-mako-pulseaudio-settings (note there is no @ at the beginning of
the line, since it’s a package, not a pattern) – another mic run error will show that the offending
package is actually pulseaudio-modules-droid

Now you’re ready to proceed to the Dealing with a Missing Package section.

8.4.1 Dealing with a Missing Package

If that package is critical (e.g. libhybris, qt5-qpa-hwcomposer-plugin etc.), build and add
it to the local repo as explained in Build HA Middleware Packages. Afterwards perform:

• Patterns

• Building the Image with MIC

Otherwise if a package is not critical, and you accept to have less functionality (or even unbootable)
image, you can temporarily comment it out from patterns in rpm/patterns/$DEVICE and orderly
perform:

• Building the droid-hal-device packages

• Create a local RPM repository

• Creating and Configuring the Kickstart File

• Patterns

• Building the Image with MIC

Alternatively (or if you can’t find it among patterns) add -NAME_OF_PACKAGE line to your .ks
%packages section (remember that regenerating .ks will overwrite this modification).

Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported 25

Sailfish OS Hardware Adaptation Development Kit Documentation

26 Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported

CHAPTER

NINE

GETTING IN

9.1 Boot and Flashing Process

This varies from device to device. There are a few different boot loaders and flashing mechanisms used
for Android devices:

• fastboot: Used by most Nexus devices

• odin: Used by most Samsung devices

For flashing fastboot-based devices, use fastboot (available in the Mer SDK), for odin-based devices,
use Heimdall.

9.2 Operating Blind on an Existing Device

Long story short, you will have to assume that you cannot:

• See any framebuffer console

• See any error messages of any kind during bootup

• Get any information relayed from your startup process

• Set any kind of modified kernel command lines

Hence, we have to learn how to operate blind on a device. The good news is that when you have a
working kernel, you can combine it with a init ramdisk and that Android’s USB gadget is built in to
most kernel configurations. It is possible then for the ramdisk to set up working USB networking on
most devices and then open up a telnet daemon.

The hybris-boot repository contains such an initrd with convenient USB networking, DHCP and telnet
server, plus the ability to boot into a Sailfish OS system. The init system in the hybris-boot initrd will
attempt to write information via the USB device serial number and model. So dmesg on the host could
produce:

[1094634.238136] usb 2-2: Manufacturer: Mer Boat Loader
[1094634.238143] usb 2-2: SerialNumber: Mer Debug setting up (DONE_SWITCH=no)

However dmesg doesn’t report all changes in the USB subsystem and the init script will attempt to
update the iSerial field with information so also do:

$ lsusb -v | grep iSerial
iSerial 3 Mer Debug telnet on port 23 on rndis0 192.168.2.15 - also running udhcpd

27

http://glassechidna.com.au/heimdall/

Sailfish OS Hardware Adaptation Development Kit Documentation

9.3 Splitting and Re-Assembling Boot Images

A boot.img file is basically a combination of a Linux kernel and an initramfs as cpio archive. The Mer
SDK offer the mkbootimg to build a boot image from a kernel and cpio archive. To split a boot image,
use split_bootimg in the SDK.

In the CyanogenMod-based Sailfish OS port, a boot image with Sailfish OS- specific scripts will be built
automatically. These boot images are then available as hybris-boot.img (for booting into Sailfish OS)
and hybris-recovery.img (for debugging via telnet and test-booting).

28 Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported

CHAPTER

TEN

FLASHING THE ROOTFS IMAGE

In order to be able to use Sailfish OS on the device, the parts that we built and assembled in the previous
chapters now need to be flashed to the device. After flashing, Sailfish OS should boot on your device on
the next reboot.

10.1 Prerequisites

• Android Recovery flashed to your device

• The stock firmware image (for your version and device)

• The vanilla CM release (for your version and device)

• A Sailfish OS rootfs update .zip, created by mic

10.2 Flashing back to Stock Android

It is important that you start with a fresh stock image that matches the Android version of the Cyanogen-
Mod release you are going to flash (which in turn is dictated by the Sailfish OS image you are going to
flash).

While the CM .zip contains all files in /system/ (e.g. libraries and libhardware modules), the stock
image also contains firmware parts and flashables for partitions that are not included in the CM .zip.

For example, if you are running stock 4.4.2 on a Nexus 4 (mako), and you are going to flash CM 10.1.3
and Sailfish OS to it, you have to first flash the stock 4.2.2 (note that this is 4.2, not 4.4) first, so that the
firmware bits are matching the CM version.

If you do not flash the right stock version (and therefore firmware), there might be some issues when
booting into Sailfish OS:

• Problems accessing /sdcard/ in recovery (e.g. adb push does not work)

• WLAN, sensors, audio and other hardware not working

If you experience such issues, please make sure you first flash the stock system, ROM, followed by a
Recovery image and CyanogenMod, and finally the Sailfish OS update. Please also note that you can’t
just take the latest stock ROM and/or CyanogenMod ROM - both versions have to match the Sailfish OS
version you are going to install, as the Sailfish OS parts are built against a specific version of the HA.

29

Sailfish OS Hardware Adaptation Development Kit Documentation

10.3 Flashing using Android Recovery

1. Boot into Android Recovery

2. Upload the CM release: adb push cm-10.1.3-$DEVICE.zip /sdcard/

3. Upload Sailfish OS: adb push sailfishos-$DEVICE-devel-1.2.3.4.zip
/sdcard/

4. In the Recovery on the device:

1. Clear data and cache (factory reset)

2. Install the CM release by picking the CM image

3. Install Sailfish OS by picking the SFOS image

4. Reboot the device

30 Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported

CHAPTER

ELEVEN

MANUAL INSTALLATION AND MAINTENANCE

This assumes you are booted into CyanogenMod on your device, can adb shell to it to get a root
shell and have your boot image and rootfs tarball ready.

Some of these approaches also work in Android Recovery (there’s an adbd running), but you obviously
won’t have network connectivity for downloading updates.

11.1 Extracting the rootfs via adb

Replace i9305-devel.tar.gz with the name of your rootfs tarball:

MER_SDK $

adb push i9305-devel.tar.gz /sdcard/
adb shell
su
mkdir -p /data/.stowaways/sailfishos
tar --numeric-owner -xvzf /sdcard/i9305-devel.tar.gz \

-C /data/.stowaways/sailfishos

11.2 Flashing the boot image via adb

The following example is for i9305, for other devices the output partition and filename is obviously
different:

MER_SDK $

adb push out/target/product/i9305/hybris-boot.img /sdcard/
adb shell
su
dd if=/sdcard/hybris-boot.img of=/dev/block/mmcblk0p8

11.3 Interacting with the rootfs via adb from Android

You can interact with the Sailfish OS rootfs and carry out maintenance (editing files, installing packages,
etc..) when booted into an Android system. You have to have your rootfs already installed/extracted.
You can use Android’s WLAN connectivity to connect to the Internet and download updates:

31

Sailfish OS Hardware Adaptation Development Kit Documentation

MER_SDK $

adb shell
su
mount -o bind /dev /data/.stowaways/sailfishos/dev
mount -o bind /proc /data/.stowaways/sailfishos/proc
mount -o bind /sys /data/.stowaways/sailfishos/sys
chroot /data/.stowaways/sailfishos/ /bin/su -
echo "nameserver 8.8.8.8" >/etc/resolv.conf
...

32 Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported

CHAPTER

TWELVE

MODIFICATIONS AND PATCHES

Running Sailfish OS using libhybris and Mer requires a few modifications to a standard Android/CM
system. We maintain forks of some repos with those patches aplied.

12.1 For Supported Devices

See List of Supported Devices for a list of devices supported by HADK. Supported devices are automat-
ically downloaded as part of the HADK android build environment.

12.1.1 Mer Modifications to CyanogenMod

Our modifications are tracked by our own hybris-specific repo manifest file, currently at version hybris-
10.1 which is based on the CyanogenMod 10.1.x releases. The below sections outline our modifications
to these sources for developing libhybris based adaptations.

12.2 Droid System

In order to work with libhybris, some parts of the lower levels of Android need to be modified:

• bionic/

• Pass errno from bionic to libhybris (libdsyscalls.so)

• Rename /dev/log/ to /dev/alog/

• TLS slots need to be re-assigned to not conflict with glibc

• Support for HYBRIS_LD_LIBRARY_PATH in the linker

• Add /usr/libexec/droid-hybris/system/lib to the linker search path

• external/busybox/: Busybox is used in the normal and recovery boot images. We need
some additional features like mdev and udhcpd.

• system/core/

• Make cutils and logcat aware of the new log location (/dev/alog/)

• Add /usr/libexec/droid-hybris/lib-dev-alog/ to the
LD_LIBRARY_PATH

• Force SELINUX off since mer doesn’t support it

33

Sailfish OS Hardware Adaptation Development Kit Documentation

• Remove various init and init.rc settings and operations that are handled by
systemd / Mer on a Sailfish OS system.

• frameworks/base/: Only build servicemanager, bootanimation and androidfw to
make the minimal Droid HAL build smaller (no Java content)

• libcore/: Don’t include JavaLibrary.mk, as Java won’t be available

All these modifications have already been done in the mer-hybris Git collection of forks from the
original CyanogenMod sources. If the hybris repo manifest is used, these changes will be included
automatically.

In addition to these generic modifications, for some devices and SoCs we also maintain a set of patches
on top of CyanogenMod to fix issues with drivers that only happen in Sailfish OS, for example:

• hardware/samsung/: SEC hwcomposer: Avoid segfault if registerProcs was never called

12.3 Kernel

For the Kernel, some configuration options must be enabled to support systemd features, and some
configuration options must be disabled, because they conflict or block certain features of Sailfish OS.

• Required Configuration Options: See initramfs/init for a list of required kernel options

• Conflicting Configuration Options: CONFIG_ANDROID_PARANOID_NETWORK: This
would make all network connections fail if the user is not in the group with ID 3003.

As an alternative to checking the kernel options in the initramfs, the script
$ANDROID_ROOT/hybris/mer-kernel-check can also be used to verify if all required
configuration options have been enabled.

12.3.1 Configuring and Compiling the Kernel

For supported devices, the kernel is built as part of mka hybris-hal with the right configuration.

For new devices, you have to make sure to get the right kernel configuration included in the repository.
For this, clone the kernel repository for the device into mer-hybris and configure the kernel using
hybris/mer-kernel-check.

34 Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported

CHAPTER

THIRTEEN

MIDDLEWARE

This chapter contains some background information about the middleware parts that are part of the
Hardware Adapation. Using this info, it should be possible to customize and build the middleware parts
for a given device.

13.1 MCE libhybris Plugin

TODO

13.2 Non-Graphic Feedback Daemon Droid Vibrator Plugin

TODO

13.3 Non-Graphic Feedback Daemon PulseAudio Plugin

TODO

13.4 PulseAudio Droid Modules

TODO

13.5 Qt5 QtFeedback Droid Vibrator Plugin

TODO

13.6 Qt5 Hardware Composer QPA

This Qt Platform Abstraction plugin makes use of the libhardware hwcomposer API to send rendered
frames from the Wayland Compositor to the actual framebuffer. While for some older devices, just flip-
ping the fbdev was enough, more recent devices actually require using hwcomposer to request flipping
and for vsync integration.

The important environment variables are:

35

Sailfish OS Hardware Adaptation Development Kit Documentation

• EGL_PLATFORM / HYBRIS_EGLPLATFORM: For the Wayland Compositor, this needs to be set
to fbdev on devices with older hwcomposer versions, and to hwcomposer for hwcomposer
version 1.1 and newer. For best results, first try fbdev, and if it doesn’t work, try hwcomposer
instead. For the Wayland Clients, this always needs to be set to wayland.

• QT_QPA_PLATFORM: For the Wayland Compositor, this needs to be set to hwcomposer to use
the plugin. Previously, eglfs was used, but the hwcomposer module replaces the old plugin
on Sailfish OS on Droid. For Wayland Clients, this always needs to be set to wayland.

When starting up an application (e.g. the Wayland Compositor, lipstick), the systemd journal
(journalctl -fa as user root) will show some details about the detected screen metrics, which
will come from the framebuffer device:

HwComposerScreenInfo:251 - EGLFS: Screen Info
HwComposerScreenInfo:252 - - Physical size: QSizeF(57, 100)
HwComposerScreenInfo:253 - - Screen size: QSize(540, 960)
HwComposerScreenInfo:254 - - Screen depth: 32

Also, it will print information about the hwcomposer module and the device. In this specific case, the
hwcomposer version is 0.3:

== hwcomposer module ==

* Address: 0x40132000

* Module API Version: 2

* HAL API Version: 0

* Identifier: hwcomposer

* Name: Qualcomm Hardware Composer Module

* Author: CodeAurora Forum
== hwcomposer module ==
== hwcomposer device ==

* Version: 3 (interpreted as 30001)

* Module: 0x40132000
== hwcomposer device ==

The source tree contains different implementations of hwcomposer backends, each one for a different
hwcomposer API version (see hwcomposer/hwcomposer_backend.cpp). Based on that detec-
tion, one of the existing implementations is used. Right now, the following implementations exist:

• hwcomposer_backend_v0: Version 0.x (e.g. 0.3) of the hwcomposer API. It can handle swapping
of an EGL surface to the display, doesn’t use any additional hardware layers at the moment and
can support switching the screen off. The VSync period is queried from the hwcomposer device,
but it will fall back to 60 Hz if the information cannot be determined via the libhardware APIs.
(HYBRIS_EGLPLATFORM=fbdev)

• hwcomposer_backend_v10: Version 1.0 of the hwcomposer API. It supports one display device,
handles VSync explicitly and uses a single hardware layer that will be drawn via EGL (and not
composed via hwcomposer). Swapping is done by waiting for VSync and uses libsync-based
synchronization of posting buffers. Switching the screen off is also supported, and sleeping the
screen disables VSync events. Also, the same VSync period algorithm is used (try to query from
libhardware, fall back to 60 Hz if detection fails). (HYBRIS_EGLPLATFORM=fbdev)

• hwcomposer_backend_v11: Version 1.1, 1.2 and 1.3 of the hwcomposer API. Version 1.3 only
supports physical displays, whereas 1.1 and 1.2 support also virtual displays. This requires libsync
and hwcomposer-egl from libhybris. Most of the hwcomposer 1.0 API properties apply, with the
exception that frame posting and synchronization happens with the help of libhybris’ hwcomposer
EGL platform. (HYBRIS_EGLPLATFORM=hwcomposer)

36 Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported

Sailfish OS Hardware Adaptation Development Kit Documentation

Instead of running the Wayland Compositor (lipstick) on top of the hwcomposer QPA plugin, one can
also run all other Qt 5-based applications, but the application can only open a single window (multiple
windows are not supported, and will cause an application abort). For multiple windows, Wayland is
used. This means that for testing, it is possible to run a simple, single-window Qt 5 application on
the framebuffer (without any Wayland Compositor in between) by setting the environment variables
HYBRIS_EGLPLATFORM and QT_QPA_PLATFORM according to the above.

13.7 SensorFW Qt 5 / libhybris Plugin

TODO

13.8 Build HA Middleware Packages

13.8.1 Target setup

Setup to use droid headers

If not done already, as a one-off (per device-target) we need to add the local repo to our target, as
indicated in Add local RPM repo to Target.

Now set the SDK target to use an up-to-date repo:

MER_SDK $

sb2 -t $VENDOR-$DEVICE-armv7hl -R -msdk-install ssu domain sales
sb2 -t $VENDOR-$DEVICE-armv7hl -R -msdk-install ssu dr sdk

And install the droid-hal-device headers:

MER_SDK $

sb2 -t $VENDOR-$DEVICE-armv7hl -R -msdk-install zypper ref
sb2 -t $VENDOR-$DEVICE-armv7hl -R -msdk-install \

zypper install droid-hal-$DEVICE-devel

If you rebuild the droid-side then you’ll need to repeat the two commands above.

13.8.2 Build Area Setup

Setup an area to build packages

MER_SDK $

mkdir -p $MER_ROOT/devel/mer-hybris
cd $MER_ROOT/devel/mer-hybris

13.8.3 Packages

libhybris

Check out the libhybris source code from Git:

Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported 37

Sailfish OS Hardware Adaptation Development Kit Documentation

MER_SDK $

PKG=libhybris
cd $MER_ROOT/devel/mer-hybris
git clone https://github.com/mer-hybris/libhybris.git
cd libhybris

Some packages will use submodules:

MER_SDK $

git submodule update
cd libhybris

Now use mb2 to build the package. This essentially runs a slightly modified rpmbuild using the
Scratchbox2 target. It also pulls in build requirements into the target. Note that this makes the target
‘dirty’ and you may miss build dependencies. This should be caught during clean builds.

MER_SDK $

mb2 -s ../rpm/libhybris.spec -t $VENDOR-$DEVICE-armv7hl build

Now add the packages you just built to the local repo and refresh the repo cache:

MER_SDK $

mkdir -p $ANDROID_ROOT/droid-local-repo/$DEVICE/$PKG/
rm -f $ANDROID_ROOT/droid-local-repo/$DEVICE/$PKG/*.rpm
mv RPMS/*.rpm $ANDROID_ROOT/droid-local-repo/$DEVICE/$PKG
createrepo $ANDROID_ROOT/droid-local-repo/$DEVICE
sb2 -t $VENDOR-$DEVICE-armv7hl -R -msdk-install zypper ref

Note that all repositories that are in tar_git format (for use with OBS) will have their RPM packages
built locally might not always have the right release and version set.

At this point, and for the libhybris package only, you can remove the mesa-llvmpipe packages from the
target:

MER_SDK $

sb2 -t $VENDOR-$DEVICE-armv7hl -R -msdk-build zypper rm mesa-llvmpipe

Failure to do this will cause problems pulling in build requirements for other packages.

qt5-qpa-hwcomposer-plugin

MER_SDK $

PKG=qt5-qpa-hwcomposer-plugin
cd $MER_ROOT/devel/mer-hybris
git clone https://github.com/mer-hybris/$PKG.git
cd $PKG
mb2 -s rpm/$PKG.spec -t $VENDOR-$DEVICE-armv7hl build
mkdir -p $ANDROID_ROOT/droid-local-repo/$DEVICE/$PKG/
rm -f $ANDROID_ROOT/droid-local-repo/$DEVICE/$PKG/*.rpm
mv RPMS/*.rpm $ANDROID_ROOT/droid-local-repo/$DEVICE/$PKG

38 Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported

Sailfish OS Hardware Adaptation Development Kit Documentation

createrepo $ANDROID_ROOT/droid-local-repo/$DEVICE
sb2 -t $VENDOR-$DEVICE-armv7hl -R -msdk-install zypper ref

sensorfw

MER_SDK $

PKG=sensorfw
SPEC=sensorfw-qt5-hybris
OTHER_RANDOM_NAME=hybris-libsensorfw-qt5

cd $MER_ROOT/devel/mer-hybris
git clone https://github.com/mer-hybris/$PKG.git
cd $PKG
mb2 -s rpm/$SPEC.spec -t $VENDOR-$DEVICE-armv7hl build
mkdir -p $ANDROID_ROOT/droid-local-repo/$DEVICE/$PKG/
rm -f $ANDROID_ROOT/droid-local-repo/$DEVICE/$PKG/*.rpm
mv RPMS/*.rpm $ANDROID_ROOT/droid-local-repo/$DEVICE/$PKG
createrepo $ANDROID_ROOT/droid-local-repo/$DEVICE
sb2 -t $VENDOR-$DEVICE-armv7hl -R -msdk-install zypper ref

ngfd-plugin-droid-vibrator

MER_SDK $

PKG=ngfd-plugin-droid-vibrator
SPEC=$PKG

cd $MER_ROOT/devel/mer-hybris
git clone https://github.com/mer-hybris/$PKG.git
cd $PKG
mb2 -s rpm/$SPEC.spec -t $VENDOR-$DEVICE-armv7hl build
mkdir -p $ANDROID_ROOT/droid-local-repo/$DEVICE/$PKG/
rm -f $ANDROID_ROOT/droid-local-repo/$DEVICE/$PKG/*.rpm
mv RPMS/*.rpm $ANDROID_ROOT/droid-local-repo/$DEVICE/$PKG
createrepo $ANDROID_ROOT/droid-local-repo/$DEVICE
sb2 -t $VENDOR-$DEVICE-armv7hl -R -msdk-install zypper ref

qt5-feedback-haptics-droid-vibrator

MER_SDK $

PKG=qt5-feedback-haptics-droid-vibrator
SPEC=$PKG

cd $MER_ROOT/devel/mer-hybris
git clone https://github.com/mer-hybris/$PKG.git
cd $PKG
mb2 -s rpm/$SPEC.spec -t $VENDOR-$DEVICE-armv7hl build
mkdir -p $ANDROID_ROOT/droid-local-repo/$DEVICE/$PKG/
rm -f $ANDROID_ROOT/droid-local-repo/$DEVICE/$PKG/*.rpm
mv RPMS/*.rpm $ANDROID_ROOT/droid-local-repo/$DEVICE/$PKG

Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported 39

Sailfish OS Hardware Adaptation Development Kit Documentation

createrepo $ANDROID_ROOT/droid-local-repo/$DEVICE
sb2 -t $VENDOR-$DEVICE-armv7hl -R -msdk-install zypper ref

pulseaudio-modules-droid

MER_SDK $

PKG=pulseaudio-modules-droid
SPEC=$PKG

cd $MER_ROOT/devel/mer-hybris
git clone https://github.com/mer-hybris/$PKG.git
cd $PKG
mb2 -s rpm/$SPEC.spec -t $VENDOR-$DEVICE-armv7hl build
mkdir -p $ANDROID_ROOT/droid-local-repo/$DEVICE/$PKG/
rm -f $ANDROID_ROOT/droid-local-repo/$DEVICE/$PKG/*.rpm
mv RPMS/*.rpm $ANDROID_ROOT/droid-local-repo/$DEVICE/$PKG
createrepo $ANDROID_ROOT/droid-local-repo/$DEVICE
sb2 -t $VENDOR-$DEVICE-armv7hl -R -msdk-install zypper ref

40 Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported

CHAPTER

FOURTEEN

PORTING SAILFISH OS TO A NEW DEVICE

14.1 Find Device Info

See Prerequisites for sourcing information about your device.

Go through Preparing Your Device.

Ensure your device boots CM. You should not need to build the whole of CM but it can be a useful
(and slow!) diagnostic if you hit problems in later stages. In this case use a separate folder and follow
instructions on the CM device wiki to be sure your environment can reproduce a working CM kernel
and rootfs images.

This example has snippets based on the Encore. The CyanogenMod base ROM has been downloaded
using:

MER_SDK $

curl -L -O \
http://download.cyanogenmod.org/get/jenkins/51847/cm-10.1.3.2-encore.zip

Installation of the ROM is described in the Encore install guide.

14.2 Prepare Environment

Go through Setting up the SDKs.

Make sure all the commands use the correct $DEVICE and $VENDOR by updating your
~/.hadk.env (in this example, DEVICE=encore and VENDOR=bn) or creating a new one
~/.hadk.env.encore and using hadk encore.

14.3 Build Android

Go through section Building Relevant Bits of CyanogenMod up to (not including) the repo sync part, to
ensure everything is setup and environment is initialised, then come back here and proceed with sections
below.

14.3.1 Device repos

You’ll need a new local manifest. The example given below is for encore. Modify it appropriately.

41

http://wiki.cyanogenmod.org/w/Encore_Info
http://wiki.cyanogenmod.org/w/Install_CM_for_encore

Sailfish OS Hardware Adaptation Development Kit Documentation

The entries will vary per-device but you’ll need the device and kernel repos as a minimum. Depending
on any build issues that arise you may need additional hardware/ and/or external/ repositories
(the example ones probably won’t be needed for your device). You’ll need to fork the kernel repository
in order to update the default config:

• device/$VENDOR/$DEVICE

• kernel/$VENDOR/$DEVICE

HABUILD_SDK $

mkdir .repo/local_manifests/
cat <<EOF > .repo/local_manifests/encore.xml
<?xml version="1.0" encoding="UTF-8"?>
<manifest>

<project path="device/bn/encore" name="CyanogenMod/android_device_bn_encore"
revision="cm-10.1" />

<project path="kernel/bn/encore" name="lbt/android_kernel_bn_encore"
revision="cm-10.1-staging" />

<project path="hardware/ti/wlan" name="CyanogenMod/android_hardware_ti_wlan"
revision="cm-10.1" />

<project path="external/wpa_supplicant_8"
name="CyanogenMod/android_external_wpa_supplicant_8"
revision="cm-10.1" />

</manifest>
EOF

Once you have a local manifest you can sync the Git repositories:

HABUILD_SDK $

repo sync
breakfast $DEVICE

If you get errors about duplicate repositories or github starts saying “Forbidden ...”, see the Common
Pitfalls section (from Building the Android HAL chapter).

14.3.2 Configure mountpoint information

Until systemd is updated we need to patch hybris/hybris-boot/fixup-mountpoints for
the device. The idea here is to ensure the udev-less initrd mounts the correct /boot and /data parti-
tion. If you’re lucky the device will simply use /dev/block/<somedev> and you can use the i9305
approach. If not then look in the recovery fstab for the right mapping.

To double check, you can boot to CM and adb shell to examine /dev/block* and /dev/mmc*
(udev-full) contents. Also boot into ClockworkMod Recovery, to check those (udev-less) paths there
too.

The build log will also have provided feedback like:

HABUILD_SDK $

hybris/hybris-boot/Android.mk:48: ********************* /boot should
live on /dev/block/platform/msm_sdcc.1/by-name/boot

hybris/hybris-boot/Android.mk:49: ********************* /data should
live on /dev/block/platform/msm_sdcc.1/by-name/userdata

42 Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported

Sailfish OS Hardware Adaptation Development Kit Documentation

Note that a subsequent repo sync will reset this unless you update your
.repo/local_manifests/encore.xml to point to a fork of the hybris-boot repo.

14.3.3 Additional packages

Additional tools can be downloaded inside the Android Ubuntu chroot. For example, devices based on
the U-Boot bootloader require the mkimage utility, which can be installed with the following command:

HABUILD_SDK $

sudo apt-get install uboot-mkimage

14.3.4 Do a build

You’ll probably need to iterate this a few times to spot missing repositories, tools, configuration files and
others:

HABUILD_SDK $

mka hybris-hal

For example, an error about hardware/ti/wlan/mac80211/compat_wl12xx leads us to check
.repo/manifests/cm-10.1.3.xml and find a likely looking project; you can see in the example
above it was added to .repo/local_manifests/encore.xml.

If you’re building for encore, try removing it from the local manifest and removing the hardware/ti
directory to see the errors. Repeat this for other local projects you may find. Also note that you may
have to run mka hybris-hal multiple times; please report a bug if that happens as something will
be wrong with dependencies.

If you hit any other issues then please report them too.

14.3.5 Kernel config

Once the kernel has built you can check the kernel config. You can use the Mer kernel config checker:

HABUILD_SDK $

tmp/mer_verify_kernel_config ./out/target/product/$DEVICE/obj/KERNEL_OBJ/.config

Apply listed modifications to the defconfig file that CM is using. Which one? It’s different for every
device:

• Check CM kernel’s commit history of the arch/arm/configs folder, look for defconfig

• Double-check which defconfig is taken when you’re building kernel

• Check it’s name under $ANDROID_ROOT/device/$VENDOR/*/BoardConfigCommon.mk

After you’ll have applied the needed changes, re-run mka hybris-boot and re-verify. Lather, rinse,
repeat :) Run also mka hybris-recovery in the end when no more errors.

Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported 43

Sailfish OS Hardware Adaptation Development Kit Documentation

14.3.6 Success

You’ve finished this section when your build finishes with:

HABUILD_SDK $

Install: $ANDROID_ROOT/out/target/product/$DEVICE/hybris-recovery.img
Install: $ANDROID_ROOT/out/target/product/$DEVICE/hybris-boot.img

14.4 Mer-side package building

As you may expect this section is done in the Mer SDK. Again, ensure the environment is correct:

MER_SDK $

hadk

14.4.1 Device specific target

Setup a device-specific target. This step is generally only needed when working with the HA layer
because the target will contain device-specific information that is not usually needed in a target.

Setup a device target by going through the whole Setting up Scratchbox2 Target chapter.

Create a simple .spec file that sets the correct variables and then includes
droid-hal-device.inc, which contains the RPM building logic:

MER_SDK $

cd $ANDROID_ROOT
cat <<EOF > rpm/droid-hal-$DEVICE.spec
device is the cyanogenmod codename for the device
eg mako = Nexus 4
%define device $DEVICE
vendor is used in device/%vendor/%device/
%define vendor $VENDOR

%include rpm/droid-hal-device.inc
EOF

And generate device folder structure and patterns:

MER_SDK $

cd $ANDROID_ROOT

rpm/helpers/add_new_device.sh

14.4.2 Device specific config

You’ll need as a minimum:

44 Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported

Sailfish OS Hardware Adaptation Development Kit Documentation

MER_SDK $

COMPOSITOR_CFGS=rpm/device-$VENDOR-$DEVICE-configs/var/lib/environment/compositor
mkdir -p $COMPOSITOR_CFGS
cat <<EOF >$COMPOSITOR_CFGS/droid-hal-device.conf
Config for $VENDOR/$DEVICE
HYBRIS_EGLPLATFORM=fbdev
QT_QPA_PLATFORM=hwcomposer
LIPSTICK_OPTIONS=-plugin evdevtouch:/dev/input/event0 \

-plugin evdevkeyboard:keymap=/usr/share/qt5/keymaps/droid.qmap
EOF

14.4.3 Build the HAL

Go through the whole Packaging Droid HAL chapter.

14.4.4 HAL specific packages

See section Build HA Middleware Packages.

Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported 45

Sailfish OS Hardware Adaptation Development Kit Documentation

46 Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported

CHAPTER

FIFTEEN

LIST OF SUPPORTED DEVICES

Devices currently supported by HADK (with $DEVICE/$VENDOR in brackets)

• Nexus 4 (mako/lge)

• Nexus 7 2012 GSM (tilapia/asus)

• Nexus 7 2012 WIFI (grouper/asus)

• Samsung Galaxy SIII LTE (i9305/samsung)

For an up-to-date list of supported features for each device, see Adaptations/libhybris in the Mer Wiki.

15.1 Devices: $DEVICE and $VENDOR

To get this information find your device here: CyanogenMod Devices, note down the “Manufacturer”
and “Codename” values, which are displayed in the side bar on the right. The Codename is the DEVICE
and the Manufacturer is the VENDOR.

15.2 For New Devices

Please refer to the Want to Port to a New Device? section.

47

https://wiki.merproject.org/wiki/Adaptations/libhybris
http://wiki.cyanogenmod.org/w/Devices

Sailfish OS Hardware Adaptation Development Kit Documentation

48 Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported

CHAPTER

SIXTEEN

LIST OF REPOSITORIES

droid-hal-device Contains RPM packaging and conversion scripts for converting the results of the An-
droid HAL build process to RPM packages and systemd configuration files.

droid-system-packager Helper package for droid-hal-device, installed on the device.

hybris-boot Script run during Android HAL build that will combine the kernel and a custom initrd
to hybris-boot.img and hybris-recovery.img. Those are used to boot a device into
Sailfish OS and for development purposes.

hybris-installer Combines the hybris-boot output and the root filesystem into a .zip file that can
be flashed via Android Recovery.

libhybris Library to allow access to Bionic-based libraries from a glibc-based host system (e.g. hw-
composer, EGL, GLESv2, ..).

qt5-qpa-hwcomposer-plugin Qt 5 Platform Abstraction Plugin that allows fullscreen rendering to the
Droid-based hardware abstraction. It utilizes libhybris and the Android hwcomposer module.

mer-kernel-check A script that checks if the kernel configuration is suitable for Sailfish OS.
Some features must be enabled, as they are needed on Sailfish OS (e.g. to sup-
port systemd), other features must be disabled, as they conflict with Sailfish OS (e.g.
CONFIG_ANDROID_PARANOID_NETWORK) at the moment.

49

Sailfish OS Hardware Adaptation Development Kit Documentation

50 Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported

CHAPTER

SEVENTEEN

PACKAGE NAMING POLICY

For consistency, certain hardware adaptation / middleware plugin packages have to be named after a
certain pattern.

As in the other chapters of this guide, $DEVICE should be replaced with the device codename (e.g.
mako for Nexus 4), and the asterisk (*) is used as wildcard / placeholder.

17.1 List of naming rules

Packages that are arch-specific (e.g. armv7hl), device-specific and contain $DEVICE in their name:

• The arch-specific HAL RPMs (built from droid-hal-device)
should be named droid-hal-$DEVICE (e.g. droid-hal-mako,
droid-hal-mako-devel, droid-hal-mako-img-boot,
droid-hal-mako-kernel, droid-hal-mako-kernel-modules,
droid-hal-mako-kickstart-configuration, droid-hal-mako-patterns,
droid-hal-mako-policy-settings and droid-hal-mako-pulseaudio-settings)

• The package containing kickstart files for mic should be named ssu-kickstarts-$DEVICE (e.g.
ssu-kickstarts-mako)

Package that are arch-independent (noarch), device-specific and contain $DEVICE in their name:

• The arch-independent HAL RPMs (built from droid-hal-device) should be
named: droid-hal-$DEVICE-* (e.g. droid-hal-mako-img-recovery and
droid-hal-mako-sailfish-config)

• The SensorFW libhybris plugin configuration should be named hybris-libsensorfw-qt5-configs
(hybris-libsensorfw-qt5-configs)

Packages that are arch-specific (e.g. armv7hl), device-specific, but do not contain $DEVICE:

• RPMs built from libhybris should be named libhybris-* (e.g. libhybris-libEGL)

• Plugins for the non-graphic feedback daemon should be named ngfd-plugin-* (e.g.
ngfd-plugin-droid-vibrator); as well as their Qt plugin qt5-feedback-haptics-droid-
vibrator (qt5-feedback-haptics-droid-vibrator)

• The QPA hwcomposer plugin should be named qt5-qpa-hwcomposer-plugin
(qt5-qpa-hwcomposer-plugin)

• The PulseAudio support modules should be named pulseaudio-modules-droid
(pulseaudio-modules-droid)

51

Sailfish OS Hardware Adaptation Development Kit Documentation

• The GStreamer plugins should be named libgstreamer0.10-* and/or gstramer0.10-*
(e.g. libgstreamer0.10-gralloc, libgstreamer0.10-nativebuffer,
gstreamer0.10-omx, gstreamer0.10-droideglsink and
gstreamer0.10-droidcamsrc)

• The SensorFW libhybris plugin should be named hybris-libsensorfw-qt5
(hybris-libsensorfw-qt5)

17.2 List of Provides

• droid-hal-$DEVICE-* provides droid-hal-* (e.g. droid-hal-$DEVICE-pulseaudio-settings
provides droid-hal-pulseaudio-settings)

17.3 TODO

The above “rules” are the current state of our hardware adaptation. Here are some things that should be
improved there:

• Some arch-specific packages contain arch-independent config files or binary blobs - make them
arch-independent (noarch) instead

• Unify the GStreamer plugin naming (either libgstreamer0.10-* or gstreamer0.10-*) to not have
two naming schemes there

• The PulseAudio settings package usually is called pulseaudio-settings-$DEVICE (we cur-
rently have droid-hal-$DEVICE-pulseaudio-settings, maybe this can be implemented as a
Provides:?)

• The Linux kernel modules are in droid-hal-$DEVICE-kernel-modules at the moment, in other
hardware adaptations we use kmod-xyz-$DEVICE

• The recovery partition in the image at the moment is droid-hal-$DEVICE-img-recovery, but for
other hardware adaptations we use jolla-recovery-$DEVICE

52 Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported

CHAPTER

EIGHTEEN

LICENSE

Creative Commons Legal Code

Attribution-NonCommercial-ShareAlike 3.0 Unported

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT
PROVIDE LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CRE-
ATE AN ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES
THIS INFORMATION ON AN “AS-IS” BASIS. CREATIVE COMMONS MAKES NO
WARRANTIES REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS
LIABILITY FOR DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE (“CCPL” OR “LICENSE”). THE WORK IS PROTECTED BY
COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN
AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE
TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY
BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CON-
TAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDI-
TIONS.

1. Definitions

1. “Adaptation” means a work based upon the Work, or upon the Work and other pre-existing works,
such as a translation, adaptation, derivative work, arrangement of music or other alterations of a
literary or artistic work, or phonogram or performance and includes cinematographic adaptations
or any other form in which the Work may be recast, transformed, or adapted including in any form
recognizably derived from the original, except that a work that constitutes a Collection will not be
considered an Adaptation for the purpose of this License. For the avoidance of doubt, where the
Work is a musical work, performance or phonogram, the synchronization of the Work in timed-
relation with a moving image (“synching”) will be considered an Adaptation for the purpose of
this License.

2. “Collection” means a collection of literary or artistic works, such as encyclopedias and antholo-
gies, or performances, phonograms or broadcasts, or other works or subject matter other than
works listed in Section 1(g) below, which, by reason of the selection and arrangement of their
contents, constitute intellectual creations, in which the Work is included in its entirety in unmodi-
fied form along with one or more other contributions, each constituting separate and independent
works in themselves, which together are assembled into a collective whole. A work that consti-
tutes a Collection will not be considered an Adaptation (as defined above) for the purposes of this

53

Sailfish OS Hardware Adaptation Development Kit Documentation

License.

3. “Distribute” means to make available to the public the original and copies of the Work or Adapta-
tion, as appropriate, through sale or other transfer of ownership.

4. “License Elements” means the following high-level license attributes as selected by Licensor and
indicated in the title of this License: Attribution, Noncommercial, ShareAlike.

5. “Licensor” means the individual, individuals, entity or entities that offer(s) the Work under the
terms of this License.

6. “Original Author” means, in the case of a literary or artistic work, the individual, individuals,
entity or entities who created the Work or if no individual or entity can be identified, the publisher;
and in addition (i) in the case of a performance the actors, singers, musicians, dancers, and other
persons who act, sing, deliver, declaim, play in, interpret or otherwise perform literary or artistic
works or expressions of folklore; (ii) in the case of a phonogram the producer being the person or
legal entity who first fixes the sounds of a performance or other sounds; and, (iii) in the case of
broadcasts, the organization that transmits the broadcast.

7. “Work” means the literary and/or artistic work offered under the terms of this License including
without limitation any production in the literary, scientific and artistic domain, whatever may be
the mode or form of its expression including digital form, such as a book, pamphlet and other
writing; a lecture, address, sermon or other work of the same nature; a dramatic or dramatico-
musical work; a choreographic work or entertainment in dumb show; a musical composition with
or without words; a cinematographic work to which are assimilated works expressed by a process
analogous to cinematography; a work of drawing, painting, architecture, sculpture, engraving or
lithography; a photographic work to which are assimilated works expressed by a process analo-
gous to photography; a work of applied art; an illustration, map, plan, sketch or three-dimensional
work relative to geography, topography, architecture or science; a performance; a broadcast; a
phonogram; a compilation of data to the extent it is protected as a copyrightable work; or a work
performed by a variety or circus performer to the extent it is not otherwise considered a literary or
artistic work.

8. “You” means an individual or entity exercising rights under this License who has not previously
violated the terms of this License with respect to the Work, or who has received express permission
from the Licensor to exercise rights under this License despite a previous violation.

9. “Publicly Perform” means to perform public recitations of the Work and to communicate to the
public those public recitations, by any means or process, including by wire or wireless means or
public digital performances; to make available to the public Works in such a way that members
of the public may access these Works from a place and at a place individually chosen by them; to
perform the Work to the public by any means or process and the communication to the public of the
performances of the Work, including by public digital performance; to broadcast and rebroadcast
the Work by any means including signs, sounds or images.

10. “Reproduce” means to make copies of the Work by any means including without limitation by
sound or visual recordings and the right of fixation and reproducing fixations of the Work, includ-
ing storage of a protected performance or phonogram in digital form or other electronic medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or restrict any uses free from
copyright or rights arising from limitations or exceptions that are provided for in connection with the
copyright protection under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a
worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license
to exercise the rights in the Work as stated below:

54 Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported

Sailfish OS Hardware Adaptation Development Kit Documentation

1. to Reproduce the Work, to incorporate the Work into one or more Collections, and to Reproduce
the Work as incorporated in the Collections;

2. to create and Reproduce Adaptations provided that any such Adaptation, including any transla-
tion in any medium, takes reasonable steps to clearly label, demarcate or otherwise identify that
changes were made to the original Work. For example, a translation could be marked “The origi-
nal work was translated from English to Spanish,” or a modification could indicate “The original
work has been modified.”;

3. to Distribute and Publicly Perform the Work including as incorporated in Collections; and,

4. to Distribute and Publicly Perform Adaptations.

The above rights may be exercised in all media and formats whether now known or hereafter devised.
The above rights include the right to make such modifications as are technically necessary to exercise the
rights in other media and formats. Subject to Section 8(f), all rights not expressly granted by Licensor
are hereby reserved, including but not limited to the rights described in Section 4(e).

4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the
following restrictions:

1. You may Distribute or Publicly Perform the Work only under the terms of this License.
You must include a copy of, or the Uniform Resource Identifier (URI) for, this License
with every copy of the Work You Distribute or Publicly Perform. You may not offer
or impose any terms on the Work that restrict the terms of this License or the ability
of the recipient of the Work to exercise the rights granted to that recipient under the
terms of the License. You may not sublicense the Work. You must keep intact all
notices that refer to this License and to the disclaimer of warranties with every copy
of the Work You Distribute or Publicly Perform. When You Distribute or Publicly
Perform the Work, You may not impose any effective technological measures on the
Work that restrict the ability of a recipient of the Work from You to exercise the rights
granted to that recipient under the terms of the License. This Section 4(a) applies to
the Work as incorporated in a Collection, but this does not require the Collection apart
from the Work itself to be made subject to the terms of this License. If You create a
Collection, upon notice from any Licensor You must, to the extent practicable, remove
from the Collection any credit as required by Section 4(d), as requested. If You create
an Adaptation, upon notice from any Licensor You must, to the extent practicable,
remove from the Adaptation any credit as required by Section 4(d), as requested.

2. You may Distribute or Publicly Perform an Adaptation only under: (i) the terms of
this License; (ii) a later version of this License with the same License Elements as this
License; (iii) a Creative Commons jurisdiction license (either this or a later license
version) that contains the same License Elements as this License (e.g., Attribution-
NonCommercial-ShareAlike 3.0 US) (“Applicable License”). You must include a
copy of, or the URI, for Applicable License with every copy of each Adaptation You
Distribute or Publicly Perform. You may not offer or impose any terms on the Adap-
tation that restrict the terms of the Applicable License or the ability of the recipient
of the Adaptation to exercise the rights granted to that recipient under the terms of
the Applicable License. You must keep intact all notices that refer to the Applicable
License and to the disclaimer of warranties with every copy of the Work as included in
the Adaptation You Distribute or Publicly Perform. When You Distribute or Publicly
Perform the Adaptation, You may not impose any effective technological measures
on the Adaptation that restrict the ability of a recipient of the Adaptation from You to
exercise the rights granted to that recipient under the terms of the Applicable License.
This Section 4(b) applies to the Adaptation as incorporated in a Collection, but this

Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported 55

Sailfish OS Hardware Adaptation Development Kit Documentation

does not require the Collection apart from the Adaptation itself to be made subject to
the terms of the Applicable License.

3. You may not exercise any of the rights granted to You in Section 3 above in any man-
ner that is primarily intended for or directed toward commercial advantage or private
monetary compensation. The exchange of the Work for other copyrighted works by
means of digital file-sharing or otherwise shall not be considered to be intended for or
directed toward commercial advantage or private monetary compensation, provided
there is no payment of any monetary compensation in con-nection with the exchange
of copyrighted works.

4. If You Distribute, or Publicly Perform the Work or any Adaptations or Collections,
You must, unless a request has been made pursuant to Section 4(a), keep intact all
copyright notices for the Work and provide, reasonable to the medium or means You
are utilizing: (i) the name of the Original Author (or pseudonym, if applicable) if sup-
plied, and/or if the Original Author and/or Licensor designate another party or parties
(e.g., a sponsor institute, publishing entity, journal) for attribution (“Attribution Par-
ties”) in Licensor’s copyright notice, terms of service or by other reasonable means,
the name of such party or parties; (ii) the title of the Work if supplied; (iii) to the extent
reasonably practicable, the URI, if any, that Licensor specifies to be associated with
the Work, unless such URI does not refer to the copyright notice or licensing informa-
tion for the Work; and, (iv) consistent with Section 3(b), in the case of an Adaptation,
a credit identifying the use of the Work in the Adaptation (e.g., “French translation
of the Work by Original Author,” or “Screenplay based on original Work by Original
Author”). The credit required by this Section 4(d) may be implemented in any rea-
sonable manner; provided, however, that in the case of a Adaptation or Collection, at
a minimum such credit will appear, if a credit for all contributing authors of the Adap-
tation or Collection appears, then as part of these credits and in a manner at least as
prominent as the credits for the other contributing authors. For the avoidance of doubt,
You may only use the credit required by this Section for the purpose of attribution in
the manner set out above and, by exercising Your rights under this License, You may
not implicitly or explicitly assert or imply any connection with, sponsorship or en-
dorsement by the Original Author, Licensor and/or Attribution Parties, as appropriate,
of You or Your use of the Work, without the separate, express prior written permission
of the Original Author, Licensor and/or Attribution Parties.

5. For the avoidance of doubt:

(a) Non-waivable Compulsory License Schemes. In those jurisdictions in which the
right to collect royalties through any statutory or compulsory licensing scheme
cannot be waived, the Licensor reserves the exclusive right to collect such royal-
ties for any exercise by You of the rights granted under this License;

(a) Waivable Compulsory License Schemes. In those jurisdictions in which the right
to collect royalties through any statutory or compulsory licensing scheme can be
waived, the Licensor reserves the exclusive right to collect such royalties for any
exercise by You of the rights granted under this License if Your exercise of such
rights is for a purpose or use which is otherwise than noncommercial as permitted
under Section 4(c) and otherwise waives the right to collect royalties through any
statutory or compulsory licensing scheme; and,

3. Voluntary License Schemes. The Licensor reserves the right to collect royalties,
whether individually or, in the event that the Licensor is a member of a collecting
society that administers voluntary licensing schemes, via that society, from any exer-

56 Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported

Sailfish OS Hardware Adaptation Development Kit Documentation

cise by You of the rights granted under this License that is for a purpose or use which
is otherwise than noncommercial as permitted under Section 4(c).

6. Except as otherwise agreed in writing by the Licensor or as may be otherwise per-
mitted by applicable law, if You Reproduce, Distribute or Publicly Perform the Work
either by itself or as part of any Adaptations or Collections, You must not distort,
mutilate, modify or take other derogatory action in relation to the Work which would
be prejudicial to the Original Author’s honor or reputation. Licensor agrees that in
those jurisdictions (e.g. Japan), in which any exercise of the right granted in Section
3(b) of this License (the right to make Adaptations) would be deemed to be a dis-
tortion, mutilation, modification or other derogatory action prejudicial to the Original
Author’s honor and reputation, the Licensor will waive or not assert, as appropriate,
this Section, to the fullest extent permitted by the applicable national law, to enable
You to reasonably exercise Your right under Section 3(b) of this License (right to make
Adaptations) but not otherwise.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING AND TO
THE FULLEST EXTENT PERMITTED BY APPLICABLE LAW, LICENSOR OFFERS THE WORK
AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERN-
ING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITH-
OUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICU-
LAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS,
ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOV-
ERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WAR-
RANTIES, SO THIS EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO
EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL,
INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF
THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

1. This License and the rights granted hereunder will terminate automatically upon any breach by
You of the terms of this License. Individuals or entities who have received Adaptations or Collec-
tions from You under this License, however, will not have their licenses terminated provided such
individuals or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8
will survive any termination of this License.

2. Subject to the above terms and conditions, the license granted here is perpetual (for the duration
of the applicable copyright in the Work). Notwithstanding the above, Licensor reserves the right
to release the Work under different license terms or to stop distributing the Work at any time;
provided, however that any such election will not serve to withdraw this License (or any other
license that has been, or is required to be, granted under the terms of this License), and this
License will continue in full force and effect unless terminated as stated above.

8. Miscellaneous

1. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor offers to the
recipient a license to the Work on the same terms and conditions as the license granted to You
under this License.

2. Each time You Distribute or Publicly Perform an Adaptation, Licensor offers to the recipient a

Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported 57

Sailfish OS Hardware Adaptation Development Kit Documentation

license to the original Work on the same terms and conditions as the license granted to You under
this License.

3. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect
the validity or enforceability of the remainder of the terms of this License, and without further
action by the parties to this agreement, such provision shall be reformed to the minimum extent
necessary to make such provision valid and enforceable.

4. No term or provision of this License shall be deemed waived and no breach consented to unless
such waiver or consent shall be in writing and signed by the party to be charged with such waiver
or consent.

5. This License constitutes the entire agreement between the parties with respect to the Work li-
censed here. There are no understandings, agreements or representations with respect to the Work
not specified here. Licensor shall not be bound by any additional provisions that may appear
in any communication from You. This License may not be modified without the mutual written
agreement of the Licensor and You.

6. The rights granted under, and the subject matter referenced, in this License were drafted utilizing
the terminology of the Berne Convention for the Protection of Literary and Artistic Works (as
amended on September 28, 1979), the Rome Convention of 1961, the WIPO Copyright Treaty of
1996, the WIPO Performances and Phonograms Treaty of 1996 and the Universal Copyright Con-
vention (as revised on July 24, 1971). These rights and subject matter take effect in the relevant
jurisdiction in which the License terms are sought to be enforced according to the correspond-
ing provisions of the implementation of those treaty provisions in the applicable national law. If
the standard suite of rights granted under applicable copyright law includes additional rights not
granted under this License, such additional rights are deemed to be included in the License; this
License is not intended to restrict the license of any rights under applicable law.

Creative Commons Notice

Creative Commons is not a party to this License, and makes no warranty whatsoever in
connection with the Work. Creative Commons will not be liable to You or any party on any
legal theory for any damages whatsoever, including without limitation any general, special,
incidental or consequential damages arising in connection to this license. Notwithstanding
the foregoing two (2) sentences, if Creative Commons has expressly identified itself as the
Licensor hereunder, it shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the Work is licensed under
the CCPL, Creative Commons does not authorize the use by either party of the trademark
“Creative Commons” or any related trademark or logo of Creative Commons without the
prior written consent of Creative Commons. Any permitted use will be in compliance with
Creative Commons’ then-current trademark usage guidelines, as may be published on its
website or otherwise made available upon request from time to time. For the avoidance of
doubt, this trademark restriction does not form part of this License.

Creative Commons may be contacted at http://creativecommons.org/.

58 Copyright 2014 Jolla Ltd. | Content licensed under CC-BY-NC-SA 3.0 Unported

http://creativecommons.org/

CHAPTER

NINETEEN

INDICES AND TABLES

• genindex

• search

59

	Overview
	Goal
	Development
	Deployment

	Prerequisites
	Mobile Device
	Build Machine
	Want to Port to a New Device?

	Preparing Your Device
	Backup and Verify Your Device
	Flash and Test CyanogenMod

	Setting up the SDKs
	Setting up required environment variables
	Setup the Mer SDK
	Preparing the Mer SDK
	Setting up an Android Build Environment

	Building the Android HAL
	Checking out CyanogenMod Source
	Building Relevant Bits of CyanogenMod
	Common Pitfalls

	Setting up Scratchbox2 Target
	Packaging Droid HAL
	Packaging droid-hal-device
	The /etc/hw-release file

	Creating the Sailfish OS Root Filesystem
	Additional Packages for Hardware Adaptation
	Creating and Configuring the Kickstart File
	Patterns
	Building the Image with MIC

	Getting In
	Boot and Flashing Process
	Operating Blind on an Existing Device
	Splitting and Re-Assembling Boot Images

	Flashing the rootfs image
	Prerequisites
	Flashing back to Stock Android
	Flashing using Android Recovery

	Manual Installation and Maintenance
	Extracting the rootfs via adb
	Flashing the boot image via adb
	Interacting with the rootfs via adb from Android

	Modifications and Patches
	For Supported Devices
	Droid System
	Kernel

	Middleware
	MCE libhybris Plugin
	Non-Graphic Feedback Daemon Droid Vibrator Plugin
	Non-Graphic Feedback Daemon PulseAudio Plugin
	PulseAudio Droid Modules
	Qt5 QtFeedback Droid Vibrator Plugin
	Qt5 Hardware Composer QPA
	SensorFW Qt 5 / libhybris Plugin
	Build HA Middleware Packages

	Porting Sailfish OS to a New Device
	Find Device Info
	Prepare Environment
	Build Android
	Mer-side package building

	List of Supported Devices
	Devices: $DEVICE and $VENDOR
	For New Devices

	List of Repositories
	Package Naming Policy
	List of naming rules
	List of Provides
	TODO

	License
	Indices and tables

